Resource Tableaux ( extended abstract )

نویسندگان

  • Didier Galmiche
  • Daniel Méry
  • David Pym
چکیده

The logic of bunched implications, BI, provides a logical analysis of a basic notion of resource rich enough to provide a “pointer logic” semantics for programs which manipulate mutable data structures. We develop a theory of semantic tableaux for BI, so providing an elegant basis for efficient theorem proving tools for BI. It is based on the use of an algebra of labels for BI’s tableaux to solve the resource-distribution problem, the labels being the elements of resource models. For BI with inconsistency, ?, the challenge consists in dealing with BI’s Grothendieck topological models within such a proof-search method, based on labels. We prove soundness and completeness theorems for a resource tableaux method TBI with respect to this semantics and provide a way to build countermodels from so-called dependency graphs. As consequences, we have two strong new results for BI: the decidability of propositional BI and the finite model property with respect to Grothendieck topological semantics. In addition, we propose, by considering partially defined monoids, a new semantics which generalizes the semantics of BI’s pointer logic and for which BI is complete

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resource-Adaptive Model Generation as a Performance Model

Model generation calculi, close relatives of tableau calculi for theorem proving, can be used as competence models for semantic natural language understanding. Unfortunately, existing model generation calculi are not yet plausible as performance models of actual human processing, since they fail to capture computational aspects of human language processing. We outline an extended model generati...

متن کامل

A Tableau Compiled Labelled Deductive System for Hybrid Logic

Compiled Labelled Deductive Systems (CLDS) provide a uniform logical framework where families of different logics can be given a uniform proof system and semantics. A variety of applications of this framework have been proposed so far ranging from extensions of classical logics (e.g. normal modal logics and multi-modal logics) to non-classical logics such as resource and substructural loogics. ...

متن کامل

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs

We introduce an extended tableau calculus for answer set programming (ASP). The proof system is based on the ASP tableaux defined in [Gebser&Schaub, ICLP 2006], with an added extension rule. We investigate the power of Extended ASP Tableaux both theoretically and empirically. We study the relationship of Extended ASP Tableaux with the Extended Resolution proof system defined by Tseitin for clau...

متن کامل

A Substructural Epistemic Resource Logic ( Extended Version ) 17 October , 2016 Didier Galmiche Pierre Kimmel

We present a substructural epistemic logic, based on Boolean BI, in which the epistemic modalities are parametrized on agents’ local resources. The new modalities can be seen as generalizations of the usual epistemic modalities. The logic combines Boolean BI’s resource semantics with epistemic agency. We give a labelled tableaux calculus and establish soundness and completeness with respect to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002